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Abstract

The volatile compositions of 192 olive oil samples from five different European countries were investigated by PTR-MS sample head-
space analysis. The mass spectra of all samples showed many masses with high abundances, indicating the complex VOC composition of
olive oil. Three different PLS-DA models were fitted to the data to classify samples into ‘country’, ‘region’ and ‘district’ of origin, respec-
tively. Correct classification rates were assessed by cross-validation. The first fitted model produced an 86% success rate in classifying the
samples into their country of origin. The second model, which was fitted to the Italian oils only, also demonstrated satisfactory results,
with 74% of samples successfully classified into region of origin. The third model, classifying the Italian samples into district of origin,
yielded a success rate of only 52%. This lower success rate might be due to either the small class set, or to genuine similarities between
olive oil VOC compositions on this tight scale.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, olive oil has steadily increased in
popularity due to its associations with a healthy diet, in
particular the so-called ‘‘Mediterranean diet”. This trend
has lead to a rise in demand of olive oil, thereby resulting
in a more widespread production of this consumable. The
European Union currently dominates the olive oil market,
accounting for more than three-quarters of worldwide
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production (with Italy, Greece and Spain contributing
97% of EU production), but increasingly this is spreading
to countries with generally less olive oil consumption, such
as Australia and Argentina (Luchetti, 2002).

Olive oil is produced by mechanical means from the fruit
of the olive tree (Olea europaea L.) and requires no refine-
ment prior to consumption, thus it retains its characteristic
aroma (Boskou, 1996). This aroma, and its complimentary
flavour, arises from the phenolic content and the large
number of volatile constituents of the oil (Morales, Rios,
& Aparicio, 1997). The latter comprise a wide variety of
compounds, including saturated, unsaturated, aromatic,
and terpenic hydrocarbons, aldehydes, alcohols, ketones,
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esters, ethers, furans, acids, and other compounds (e.g.
Aparicio & Morales, 1998; Flath, Forrey, & Guadagni,
1973).

There are many different important factors affecting the
volatile composition of olive oil, such as fruit genotype,
ripening, and the processing equipment used in production
(Angerosa, Mostallino, Basti, & Vito, 2001; Aparicio &
Morales, 1998, and references therein). The influence of cli-
mate and soil type are also crucial for olive oil volatile pro-
files (Kalua et al., 2007), thus the geographic origin of an
oil is an important quality factor and has become more
attractive to certify in recent years. In Europe this has lead
to the introduction of several official regulations for agri-
cultural products, such as protected denomination of ori-
gin (PDO), protected geographical indication (PGI), and
traditional speciality guaranteed (TSG) certifications,
which allow certain products to be labelled with the names
of their geographical area of production (E.C., 2006).

Since the geographical classification of food plays such
an important role in its quality, several methods for origin
authentication have been tested for reliability. Traditional
quality assessment methods of a food product rely on pan-
els of human sensory analysts; such analyses, however, do
not always offer reproducible results and are time-consum-
ing and expensive, requiring highly trained and qualified
panel testers. Furthermore, the parameters of assessment
by these means are generally only suited to quality evalua-
tions and not to the determination of geographic origin.
Therefore, increasingly, there has been a push to develop
alternative and complimentary analytical procedures to
human sensory analysis.

In the past, there have been a number of studies using a
wide variety of analytical techniques to determine geo-
graphic origin of olive oils in relation to their volatile con-
tent, with success varying according to methodologies used
and variety or type of compounds measured. These include
isotope ratio analyses, which exploit the chemical composi-
tion and natural isotopic ratios of certain compounds pres-
ent in the samples to enable authenticity and origin
verification of the sample (e.g. Angerosa et al., 1999). Ana-
lytical methods here, amongst others, include isotopic ratio
mass spectrometry (IRMS) (Bréas, Sada, Reniero, Guillou,
& Angerosa, 1998) and site-specific natural isotope frac-
tionation nuclear magnetic resonance (SNIF-NMR) (Lai,
Casu, Saba, Corongiu, & Dessi, 1995). Other techniques
have equally been used for the geographical origin determi-
nation of food products: gas chromatography–mass spec-
trometry (GC–MS) (e.g. Zunin, Boggia, Salvadeo, &
Evangelisti, 2005), dynamic headspace-gas chromatogra-
phy (DHS-GC) (e.g. Luna, Morales, & Aparicio, 2006),
solid-phase micro extraction (SPME) coupled with GC–
MS (Temime, Campeol, Luigi Cioni, Daoud, & Zarrouk,
2006) or with GC-flame ionization detector (GC-FID)
(Vichi, Pizzale, Conte, Buxaderas, & López-Tamames,
2003), high pressure liquid chromatography (HPLC) (e.g.
Romero, Sánchez-Viñas, Gázquez, & Bagur, 2002) and
electronic noses (Cosio, Ballabio, Benedetti, & Gigliotti,
2006). Spectroscopy also plays an important role in such
analyses and ranges from ultra-violet (UV) to near-infrared
(NIR), mid-infrared (MIR), visible and Raman spectros-
copy (Reid, O’Donnell, & Downey, 2006, and references
therein).

Additionally, the results from many analytical measure-
ments rely on the strengths of the mathematical methods
applied to the data for evaluation. Two popular and suc-
cessful methods for the determination or distinction
between geographic origins of different olive oils, for
instance, are classification and influence matrix analysis
(CAIMAN) and principal component analysis (PCA)
(e.g. Angerosa et al., 2004; Vichi et al., 2003, and references
therein).

Despite this wide array of analytical techniques, most
either suffer drawbacks of being too time-consuming to
be practicable for analyses of many samples, or they lack
the sensitivity to provide distinguishable features between
different samples. Recently, proton-transfer-reaction mass
spectrometry (PTR-MS) has been used to evaluate volatiles
in the headspace of extra virgin and rancid olive oils in
order to detect oxidative alterations in the samples (Aprea
et al., 2006). This fast and sensitive technique for volatile
organic compound (VOC) detection enables direct on-line
headspace analyses of complex samples to be made without
the need for sample preparation, thereby potentially
enabling many samples to be analysed within a short per-
iod. A multivariate statistical approach on the PTR-MS
data in the aforementioned study (Aprea et al., 2006)
enabled successful distinction between the two types of
oil, demonstrating the capabilities of PTR-MS as being a
useful tool with this respect. The aim of the present study
is to evaluate PTR-MS for categorisation of olive oils
according to their geographic origin using multivariate sta-
tistical methods for data evaluation.
2. Materials and methods

2.1. Olive oil samples

One hundred and ninety two Mediterranean PDO pro-
tected olive oil samples (obtained courtesy of the EU-
funded TRACE project; trace.eu.org) from different olive
cultivars in defined geographical areas were collected by
scientists of the European Commission Joint Research
Centre, Institute for Health and Consumer Protection,
Physical and Chemical Exposure Unit in Ispra, Italy. These
oils originated from 80 communities (cities/towns) in 45
provinces of different districts in five European countries.
(Some districts in each country are divided into provinces
and communities, hence the sub-divisions here). The olive
oil sample distribution was as follows (and summarised
in Table 1): 92 samples were from 24 provinces of nine dis-
tricts in Italy; 46 were from 11 provinces in six districts of
Greece; six were from four provinces of one district in
Cyprus; 38 were from four provinces of one district in
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Table 1
List olive oil samples, with sub-divisions for the Italian samples into
districts and regions of origin

Country Region District Total number
of samples

Cyprus 1 4 6

France 1 1 10

Greece 6 11 46

Italy 9 24 92

North: Veneto, Liguria 7 36
Centre: Toscana, Umbria,
Lazio, Abruzzo

9 30

South-east: Molise, Puglia 4 18
Sicilia: Sicilia 4 8

Spain 1 4 38
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Spain; and 10 were from one province of one district in
France. The oils were produced in the first half of 2006
and analysed in August 2006.

2.2. VOC measurements

The headspace air of the olive oil samples was analysed
using PTR-MS, an analytical technique that has been
described extensively elsewhere (e.g. Lindinger, Hansel, &
Jordan, 1998). The advantages of PTR-MS are manifold:
It is capable of on-line VOC monitoring, enabling rapid
and accurate quantification of VOCs contained in a complex
air matrix, such as in the headspace of food samples. Fur-
thermore, this technique requires no sample preparation, is
relatively insensitive to changes in sample humidity, and
air may be used as the carrier gas, altogether allowing sam-
ple headspace air to be measured directly and immediately.

2.3. Sampling procedure

Following collection of the olive oil samples, they were
stored in cold rooms at 4 �C in the absence of light. Four
hours prior to analysis samples were removed from the
cold storage rooms and placed in the laboratory, which
was at a room temperature of approximately 20 �C.

Measurements were carried out, without any sample
pre-treatment, with 5 ml aliquot of olive oil filled in a
250 ml glass vial capped with a polytetrafluoroethylene
(PTFE, Teflon�) septum. Filtered outdoor air was intro-
duced through the septum into the vial using a gas-tight
syringe and exported through a second syringe. The head-
space air of a sample was equilibrated for 45 min at 30 �C
in a water bath and delivered directly to the inlet of the
PTR-MS system. The inlet was heated to 80 �C to prevent
loss of volatiles along the sampling inlet line.

The PTR-MS was operated at a standard E/N (ratio of
electric field strength across the reaction chamber, E, to buf-
fer gas number density, N, within the chamber) of 138 Td
(1 Td = 10�17 cm2 V molecule�1) and measurements were
made in ‘mass scan’ mode, whereby a complete mass spec-
trum in the range of 20–150 atomic mass units (amu), at a
mass detection rate of 0.2 s mass�1, was gathered in under
half a minute. The mass spectrometric data were collected
in three replicates/olive oil sample with each replicate mea-
sured for 5 mass scan cycles, thereby giving an analysis
time/replicate of just over 2 min.

2.4. PTR-MS data evaluation and selection

PTR-MS raw count-rate data were converted to volume
mixing ratios (VMRs) for statistical analysis using a typical
PTR-MS sensitivity value observed for oxygenated VOCs.
Data for analysis of each oil sample were selected as fol-
lows: of the five measurement cycles (mass spectra/sample
replicate), the first two cycles were discarded and the
remaining three were used to provide a mean mass spec-
trum/replicate. Subsequently, a mean mass spectrum/sam-
ple was calculated from these replicate data (3/sample). In
this manner, a dataset containing mean mass spectra/sam-
ple analysed could be compiled. These were used for subse-
quent multivariate analyses. Next, a mean mass spectrum
for each country of origin was calculated using these indi-
vidual sample mean data, which allowed for comparison of
the mass spectra between the different countries.

2.5. Data analysis

In order to further explore which masses were specific
for the various countries, a two-way analysis of variance
(ANOVA) was carried out for each of the 130 masses mea-
sured. By applying a p value of p = 0.05/130 = 0.00033 and
with subsequent least significant difference (LSD) tests, 45
masses came out as significant. Partial least squares dis-
criminant analysis (PLS-DA) was carried out on the 192
samples (log transformed mean of the three mass spectra
of each sample) in order to estimate a classification (into
country of origin) model for the olive oil samples. This
analysis was carried out using the PLS Toolbox v.4.0 for
MatlabTM (Wise et al., 2006). The method of PLS-DA per-
forms a PCA-like reduction on the independent variables
(in this case, the log transformed data of the individual
mass signal intensities) to obtain a maximum correlation
of these with the dependent variables (here, the class mem-
bership, i.e. country, or district, etc.). The performance of
the fitted model was evaluated using 10-fold cross-valida-
tion: 10% of the samples were removed at random from
the complete dataset. The remaining data were then used
to fit a model, which was subsequently applied to predict
class membership for the removed samples. This procedure
was repeated 10 times to ensure that a prediction was avail-
able for all samples.

The classification method PLS-DA is a classification
method closely related to Fisher’s or linear discriminant
analysis (LDA). Let N be the number of independent sam-
ples (in our case, N = 192, each sample being the average of
the three replicates), C the number of classes (in our case,
the five countries) and V the number of independent vari-
ables (in this case, the log transformed data of the individ-
ual mass intensities, so V = 128). If V > C, then in LDA
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there will be (at most) C � 1 discriminant functions, mean-
ing that (C � 1)*V coefficients have to be estimated. Hence,
(C � 1)*V should not exceed ca. 20% of N. If the number of
variables becomes too large, and especially if (C � 1)*V

becomes larger than N, an LDA analysis can no longer
be carried out. Hence, for most mass spectrometry data-
sets, LDA is not a useful technique. PLS-DA offers a rem-
edy. In PLS-DA a PCA-like reduction is performed on the
space of the independent variables; the components
extracted however are not the principal components (i.e.
they are not the components having maximal variance)
but they are components having maximal correlation with

the dependent variable (the class membership, i.e. country,
or district, etc.). The DA is then performed using these
components as independent variables, and not the original
variables.

Other classifications techniques are available. For SIM-
CA (Soft Independent Modelling of Class Analogy) gener-
ates a distinct PCA model for each class, and then
combines these C models. With SIMCA, the components
extracted, for each class, are the principal components,
i.e. the components having the largest variance. These com-
ponents are, in general, (very) different from the compo-
nents having maximal correlation with the dependent
variable. Another difference is that with SIMCA a sample
might be assigned to either no class at all, or to one single
class, or to more than one class, whereas with DA (both
with LDA and with PLS-DA) the space of the variables
(components) is divided into separate regions, one region
for each class. Therefore, with DA a sample is always
assigned to one and only one class. As the origin of the
samples in the present dataset are known DA is an appro-
priate choice. Because of the large number of variables,
PLS-DA was again more appropriate than LDA.

3. Results and discussion

3.1. Olive oil mass spectra

The statistical analyses in this study use the mass spec-
tral data as ‘fingerprints’, i.e. the masses and their corre-
sponding signal intensities (VMRs) in each sample mass
spectrum act as a pattern for inter-comparison of the sam-
ples. All of the olive oil samples produced signals on most
masses in the defined measurement range (20–150 amu),
indicating the complex VOC composition of olive oil.
Mean sample mass spectra for each country are displayed
in Fig. 1a–e. The VOCs with higher volatility (lower mass)
dominate the spectrum in terms of signal intensity,
although lower masses may also result from fragmentation
of larger compounds. The dominant signals are listed in
Table 2, along with tentative compound assignments.

Significantly high signals on masses 57, 81, and 99 reflect
the typical pattern of ions associated with hexanal, which is
a compound that results during lipoxygenase (LOX) activ-
ity in the olive fruits (Morales et al., 1997; Williams, Mor-
ales, Aparicio, & Harwood, 1998). The LOX pathway is
widespread in the plant kingdom and is responsible for
the formation of many volatiles in olive oil, including C5
and C6 compounds. The level and activity of each enzyme
involved in the LOX pathway define the concentrations of
the produced volatiles. Alcohol dehydrogenase (ADH) is
one of these enzymes that is responsible for the reversible
reduction of aliphatic aldehydes to alcohols and is affected
by environmental growth conditions (Kalua et al., 2007).
Therefore, the level of C5 and C6 aldehydes and alcohols
for oil samples from different regions varies (Vichi et al.,
2003). The signal intensity for this compound was most
prominent in the Italian oil samples, which is in keeping
with other studies where the richness of C6 volatile com-
pounds in Italian oils has also been observed (e.g. Kalua
et al., 2007). In addition to the above masses, high signals
were seen on other masses associated with further LOX
product compounds, e.g. hexenal, hexenol and hexenyl ace-
tate, etc. (see Table 2).

Other large signals were observed on mass 33 (and 51),
which is usually associated with methanol (and hydrated
methanol); however, there were no reports found in the lit-
erature of olive oil containing this alcohol, thus it is more
likely that the signals on these masses arise from the frag-
mentation of one or more larger molecules. Additional
high signals are seen on masses 43 and 61, which are likely
to be acetic acid. Production of acetic acid can result from
the presence of Acetobacter during storage of the olive
fruit, especially when temperatures are relatively high
(Angerosa et al., 2004). Many signals associated with alde-
hydes were also observed, such as mass 45 (acetaldehyde;
particularly in the Spanish samples), masses 55 and 73,
(butanal; particularly in the French samples), and masses
69 and 87 (pentanal; abundant in both the Greek and
Spanish samples), which have previously been detected in
heated or oxidized olive oils (Morales et al., 1997; Stash-
enko, Wong, Martı́nez, Mateus, & Shibamoto, 1996).

Results of the present study are in keeping with the
recently published study of Cavaliere et al. (2007). In this
study the selection of markers from the secondary metabo-
lism of lipoxygenase for olive oils of various origins is
described. The compounds selected included hexanal, (E)-
2-hexenal, (E)-2-hexenol and (Z)-3-hexen-1-yl acetate.

3.2. Classifications

3.2.1. Number of components
Three models were fitted on three different datasets: on

the entire 192 samples dataset, a model was fitted to classify
the samples into their country of origin; and two further
models were fitted on the subset of 92 Italian samples only,
to classify these into their region of origin and into their dis-
trict (smaller region) of origin, respectively.

In this approach, a reduction of dimensions on the indi-
vidual mass signal intensities is provided in order to cap-
ture the maximum correlation with the dependent variable
(country, region, or district). The number of dimensions
extracted is an important parameter in such a model: mod-
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Fig. 1. (a)–(e) Mean sample mass spectra for each country (filtered for signals associated with the PTR-MS ion source: NO+ at 30; Oþ2 at 32; major water
cluster ions at 37 and 55). Note the same scale on the y-axis before the break (up to 200 ppbv).
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els for one through six dimensions were investigated, with
each model being evaluated by the cross-validation proce-
dure described above (Section 2.5). Table 3 details the
results of each PLS-DA for country classifications of all



Table 2
The predominant masses for each country with corresponding VMRs for all samples

Protonated mass
(amu)

VMR (ppb)a Tentative assignmentb

Cyprus France Greece Italy Spain

31 10 17 11 19 24

33 578 2036 1135 1918 3716

35 1 5 3 4 9

39 18 17 14 27 11 Hexenyl acetatec (fragment)
41 27 32 26 26 23 Hexanold,e (fragment)
43 30 126 39 71 153 Acetic acidc,f, hexanold,e, hexyl acetated,e (fragment)
45 90 181 93 149 246 Acetaldehydeg

47 115 162 53 77 105 Ethanolc

51 1 4 2 3 9

57 30 44 36 73 14 Hexanald,e,f, hexenale, hexanole (fragment)
59 156 41 109 71 20 Acetoneh, propanalf, hexenolc,e (fragment)
61 18 127 31 50 150 Acetic acidd, hexyl acetated,e, methylbutyl acetated, ethylacetated, butylacetate

estersd (fragment)
63 0 1 0 1 4 Dimethyl sulfidef, acetaldehydeg (hydrate)
69 8 7 9 6 8 Pentanalf (fragment)
73 6 9 7 6 5 Butanalg, butan-2-oned

75 3 24 6 9 74 Methylacetatec,i

81 11 8 7 19 6 Hexanali,j (fragment)
83 6 6 5 6 6 Hexenold,e, hexenyl acetatee, hexanalc,d,e

85 7 2 3 3 4 Hexanolc,d

87 4 8 6 6 11 Pentanalf, pentanonek

89 0 6 1 1 4 Butyrate estersi, butanoic acidd

99 3 4 3 7 1 Hexenald,e,f

VMRs highlighted in bold represent the most abundant masses for the respective country, compared to the other countries. A tentative identification has
also been provided, based on the literature.

a VMRs were calculated according to typical sensitivity value observed for oxygenated VOCs.
b Compounds listed are potential candidates only, not absolute identifications, and relate to those compounds reported in the literature to be present in

olive oil that would produce a signal on the given mass.
c Angerosa et al. (2004).
d Kalua et al. (2007).
e Morales, Berry, McIntyre, and Aparicio (1998).
f Morales et al. (1997).
g Stashenko et al. (1996).
h Williams et al. (1998).
i Reiners and Grosch (1998).
j Kanavouras, Kiritsakis, and Hernandez (2005).

k Vichi et al. (2003).

Table 3
Number of correct classifications (in %) in the cross-validation for various
numbers of extracted dimensions in PLS-DAa

Classification criteria

European
country

Region in
Italy

District in
Italy

1 Dimension 33 39 21
2 Dimensions 62 50 39
3 Dimensions 82 73 43
4 Dimensions 82 74 52

5 Dimensions 86 76 49
6 Dimensions 84 79

Number of classes 5 4 9
Number of samples 192 92 92

a Selected number of dimensions for final model in bold.
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samples, plus region and district classifications of the Italian
samples. Results showed that an increase in the number of
dimensions above four did not improve classification. In
addition, two random permutations of the class labels were
carried out, so that nonsense datasets were generated for
comparison with the real model. If the respective prediction
errors of the two are comparable, it can be concluded that
mainly noise has been modelled. In this case, the first two
dimensions, respectively, classified 27% and 19% of the olive
oils correctly, which is more or less equal to the percentage
expected by chance only, i.e. 20–25% for this five class case.

3.2.2. Classification into country of origin

Cross-validation of the five-dimensional model obtained
from PLS-DA for all 192 samples resulted in 86% of
the samples being correctly classified into their country of
origin (see Table 3). High correct classification rates of
the oils into four of the five countries were observed, as
listed in Table 4: Cyprus, 100%; Italy, 89%; Greece, 89%,
and Spain, 87%. Classification of the French samples (only
40% of samples correctly classified) was poor in this model.

The scores plot for the first three dimensions of the
PLS-DA model for all samples is presented in Fig. 2.



Table 4
Classification of olive oils originating from five European countries by PLS-DA with cross-validation by their PTR-MS spectral data: absolute numbers,
percentages in brackets, the correctly classified samples in bolda

Sample origin Classification Total number of samples

Cyprus France Greece Italy Spain

Cyprus 6 (100%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 6
France 0 (0%) 4 (40%) 2 (20%) 2 (20%) 2 (20%) 10
Greece 0 (0%) 0 (0%) 41 (89%) 4 (9%) 1 (2%) 46
Italy 0 (0%) 2 (2%) 5 (5%) 82 (89%) 3 (3%) 92
Spain 0 (0%) 2 (5%) 0 (0%) 3 (8%) 33 (87%) 38

a Number correct: 166 (86%).

Fig. 2. Scores plot of the first three dimensions of the PLS-DA model of all 192 olive oil samples: classification into country of origin.
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The separation of oils originating from Greece, Spain,
Italy, and Cyprus can clearly be seen. The French olive
oils display a much broader spread and, as such, a much
less reliable classification, with only 40% of samples des-
ignated correctly (see Table 4). Although the French sam-
ples all originated from the same region (Paca region,
Bouches-du-Rhone Province), these 10 samples came
from seven different towns. In fact, the distribution in
the scores plot of Fig. 2 indicates that these oils have vol-
atile characteristics in common with oils from Greece and
Spain in particular. Furthermore, the group of French
samples was relatively small and an improved classifica-
tion success rate may be possible using a larger number
of samples.

In order to further explore which masses were specific
for the various countries, a two-way ANOVA was carried
out here for each mass, with subsequent LSD tests when a
significant difference was observed (p < 0.00033). In total,
45 masses showed significant differences between countries,
discriminating them into three groups, and five masses
divided the countries into four groups.
3.2.3. Classification of Italian samples into region

Following successful classification of olive oil samples
on the larger (European) scale for four of the five countries,
a four components PLS-DA model was tested for its capa-
bilities in classifying a more refined dataset. Since a high
proportion of all olive oil samples measured were of Italian
origin (92 samples in total; constituting 48% of all sam-
ples), a PLS-DA was made on a dataset of only the Italian
samples. This was initially made to test classification of
regions of origin in Italy, which were designated as com-
pass regions: Veneto and Liguria – North; Toscana,
Umbria, Lazio, Abruzzo – Centre; Molise and Puglia –
South-east; Sicilia – Sicilia. (The district of Abruzzo was
allocated as Centre, although it could equally have been
designated as South-east.)

The PLS-DA four-component model successfully classi-
fied 74% of Italian samples into their regions of origin, as
indicated in Table 5: Centre, 93%; Sicilia, 88%; and North,
64%; and South-east, 56%. A scores plot of first three com-
ponents of Italian olive oil samples into region is shown in
Fig. 3.



Table 5
Classification of olive oils originating from four regions in Italy by PLS-
DA with cross-validation by their PTR-MS data: absolute numbers,
percentages in brackets, and correctly classified samples in bolda

Sample
origin

Classification Total number
of samplesCentre North South-east Sicilia

Centre 28 (93%) 0 (0%) 1 (3%) 1 (3%) 30
North 4 (11%) 23 (64%) 7 (19%) 2 (6%) 36
South-east 0 (0%) 5 (28%) 10 (56%) 3 (17%) 18
Sicily 1 (13%) 0 (0%) 0 (0%) 7 (88%) 8

a Number correct: 68 (74%).
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3.2.4. Classification of Italian samples into district (smaller

region)

A further test of the PLS-DA four-component model
was made for its classification capabilities into even smaller
Fig. 3. Scores plot of the first three dimensions of the PLS-DA model for the 92
a compass).

Table 6
Classification of olive oils originating from nine districts in Italy by PLS-DA
percentages in brackets, the correctly classified samples in bolda

Sample origin Classification

Abruzzo Lazio Liguria Molise Puglia

Abruzzo 5 (63%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Lazio 2 (25%) 2 (25%) 0 (0%) 0 (0%) 0 (0%)
Liguria 0 (0%) 0 (0%) 22 (79%) 4 (14%) 2 (7%)
Molise 0 (0%) 0 (0%) 3 (38%) 3 (38%) 2 (25%)
Puglia 0 (0%) 0 (0%) 2 (20%) 4 (40%) 3 (30%)

Sicilia 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Toscana 1 (17%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Umbria 2 (25%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Veneto 2 (25%) 0 (0%) 0 (0%) 0 (0%) 2 (25%)

a Number correct: 48 (52%).
districts. This was again done using the Italian samples
dataset, which contained olive oil originating from nine
individual districts in Italy. Here, the model gave poorer
classification verification, with only 52% of the samples
correctly allocated to their district of origin, as indicated
in Table 6: Liguria, 79%; Abruzzo, Toscana, 67%; 63%;
Umbria and Sicilia, 50%; Molise, 38%; Puglia, 30%; Lazio
25%; and Veneto, 13%.

The corresponding scores plot for this analysis is pre-
sented in Fig. 4. Although the samples of each district
are grouped together, these are quite spread out and there
is a great deal of overlap in the clustering in which samples
from two or more districts sometimes appear close
together. It seems evident with these results that sample
classification via this model becomes more difficult the
Italian olive oil samples: classification into region (according to points on

with cross-validation by their PTR-MS spectral data: absolute numbers,

Total number of samples

Sicilia Toscana Umbria Veneto

0 (0%) 2 (25%) 0 (0%) 1 (13%) 8
0 (0%) 3 (38%) 1 (13%) 0 (0%) 8
0 (0%) 0 (0%) 0 (0%) 0 (0%) 28
0 (0%) 0 (0%) 0 (0%) 0 (0%) 8
0 (0%) 0 (0%) 0 (0%) 1 (10%) 10
4 (50%) 3 (38%) 0 (0%) 1 (13%) 8
1 (17%) 4 (67%) 0 (0%) 0 (0%) 6
0 (0%) 2 (25%) 4 (50%) 0 (0%) 8
1 (13%) 2 (25%) 1 (13%) 1 (13%) 8



Fig. 4. Scores plot of the first three dimensions of the PLS-DA model for the 92 Italian olive oil samples: classification into district (smaller region).
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smaller the district. Additionally, the number of samples
per class may be of influence too. Although this analysis
was carried out with at least eight samples for the smallest
class, using a larger sample population may help to
improve classification.
3.3. Factors influencing classification

The composition of organic compounds in a final olive
oil product results from a combination of various factors
such as cultivar, ripeness, processing and storage of the
oil, and additionally strongly depends on climate and envi-
ronmental factors. Some of the latter aspects associated
with olive farming appear in the form of soil erosion,
run-off to water bodies and degradation of habitats based
on the interactions occurring between surface relief, soils,
and water on the one hand, and the societal dynamics on
the other. In terms of farming area, the altitude, slope, ori-
entation, annual solar radiation, exposure to the prevailing
winds, and fertility of the soil and environment are also
important factors (Temime et al., 2006). Thus, the different
VOC composition of olive oils from various regions is
dependent on a complex assortment of influences. So, even
if an oil is produced with the same cultivar and farming
conditions and methods, the volatile nature of the final
oil product could be severely altered by the fruit storage
or oil production technique. Such a condition could there-
fore alter results of an origin classification. Nevertheless,
results here show that despite all of these influential factors
affecting the final olive oil product, a separation of oils
according to geographic origin can be successfully made
on the large scale and, to a lesser extent, on the district
scale.

4. Conclusion

Mass spectral ‘‘fingerprints” were made for 192 olive oil
samples from five different European countries using PTR-
MS headspace analysis. Multivariate statistical analysis of
these data allowed samples to be separated successfully
into country of origin, using the masses as predictor vari-
ables. Further separation of the Italian samples into the
smaller, region-scale (points of a compass) using this tech-
nique was also possible. On a more focussed, districtal
scale, however, this method showed less strength, although
this may have been attributable to the small sample size.

The advantages of this method over others are its sim-
plicity, efficiency and reproducibility. Direct PTR-MS
headspace analyses of olive oil samples were made without
prior sample preparation and rapid mass spectra/sample
were carried out in just over 2 min: this enabled many sam-
ples to be analysed in only a short period. Such a method
could be developed to incorporate auto-sampling proce-
dures to provide a maximum throughput of sample analy-
ses and could provide a future screening technique for olive
oil origin determination that is both fast and accurate.
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